Учебная работа № /7217. «Курсовая Автопортреты Рембранта

Учебная работа № /7217. «Курсовая Автопортреты Рембранта

Количество страниц учебной работы: 24
Содержание:
Содержание

Введение

Глава 1. Творчество Рембрандта и место автопортретов в нем
1.1. Особенности творчества Харменса Ван Рейна Рембрандта
1.2. Современный критический взгляд на автопортреты Рембрандта

Глава 2. Особенности композиционного, светотеневого и колористического решения автопортретов, техника и материалы
2.1. Автопортреты в призме хронологических аспектов творчества Рембрандта
2.2. Автопортреты Рембрандта в призме аспектов формы выполнения

Заключение

Список использованной литературы

Глоссарий

Список использованной литературы

1. В Голландии начался «Год Рембрандта» (15 декабря 2005). // http://www.newsru.com/cinema/15dec2005/rem.html
2. В Нидерландах отметили 400-летие со дня рождения Рембрандта (17 июля 2006). // http://www.newsru.com/cinema/17jul2006/rem.html
3. Егорова К.С. Портрет в творчестве Рембрандта. – М.: Наука, 1975. – 237 с.
4. Егорова К.С. Рембрандт Гарменс ван Рейн. Картины художника в музеях Советского Союза [Альбом]. – Л.: Просвещение, 1971. – 213 с.
5. Линник И. Рембрандт ван Рейн. 1606-1609. – М.: Наука, 1956. – 261 с.
6. Левитин Е. Офорты Рембрандта. – М.: Наука, 1963. – 113 с.
7. О Рембрандте: Гете, И. Тэн, Фромантен, Э. Верхарн. – М.: ГИЗ, 1936. – 185 с.
8. Рембрандт Гарменс ван Рейн: Картины художника в музеях Советского Союза. – Л.: Наука, 1971. – 331 с.
9. Рембрандт. Автопортрете с Саскией. // http://kleiner.inventech.ru/lib/picture/picture-0018.shtml
10. Рембрандт. Художественная культура Западной Европы XVII в. – М.: Наука, 1970. – 368 с.
11. Сайт живописи. // http://www.staratel.com/
12. Ученые установили, что автопортреты Рембрандта таковыми не являются. // Аргументы и факты (14 октября 2005). http://news.aif.ru/news.php?id=21437
13. Rembrandt Harmenszoon van Rijn. /// http://www.abcgallery.com/R/rembrandt/rembrandt.html

Стоимость данной учебной работы: 975 руб.Учебная работа №   /7217.  "Курсовая Автопортреты Рембранта

 


Форма заказа готовой работы

Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

Укажите № работы и вариант


Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


Введите символы с изображения:

captcha

Выдержка из похожей работы

 

 Отредактированную диаграмму через буфер обмена вставляем в
пояснительную записку

Рис,2 График функции, проходящей через заданные точки А (-2;4), B(-1;5), C(6;2), с нанесенными маркерами и
соответствующий формуле (9).

3 Задача № 2

Используя формулы численного интегрирования
(прямоугольников «с избытком» и «с недостатком», трапеций,
парабол), определить площадь фигуры, ограниченной построенной кривой, осью
абсцисс 0Х, и прямыми, проходящими через заданные крайние точки и
перпендикулярными оси 0Х,На основании проведенного анализа результатов сделать
вывод о предпочтительности применения одной из формул в данном конкретном
случае.

3.1 Теоретический
подход к решению задачи

Для решения поставленной задачи необходимо провести интегрирование
полученной функции (9) в пределах отрезка [-2;6], ограниченного заданными
крайними точками A и C.

Площадь фигуры, ограниченной построенной кривой, осью абсцисс 0Х, и
прямыми, проходящими через заданные крайние точки А(-2;4), C(6;2) и перпендикулярными оси 0Х, равна:

                                                                                                                                              (11)

Тогда точное решение данного интеграла (11) будет равно

 

 

                                                                                                                                              (12)

S = 37,87 ед2

Для определения площади фигуры с помощью формул численного
интегрирования в пределах отрезка (-2; 6) проведем по семи точкам,

Площадь фигуры по
формуле прямоугольников «с недостатком»

                                                                                                                                              (13)

Площадь фигуры по формуле прямоугольников «с избытком»

                                                                                                                                              (14

Площадь фигуры по формуле трапеций

                                                                                                                                              (15

Площадь фигуры по формуле парабол

 

                                                                                                                                              (16)

где h- шаг
интегрирования определяется по формуле

3.2 Решение
задачи с использованием электронного табличного процессора Excel

1,На том же листе Excel в ячейках A12:G20 создадим таблицу

Таблица 3

 

A

B

C

D

E

F

G

12

 

Площадь

%
ошибки

13

Точное
решение

 

 

14

Формула
прямоугольников с «недостатком»

 

 

15

Формула
прямоугольников с «избытком»

 

 

16

Формула
трапеций

 

 

17

Формула
парабол

 

 

18

 

 

 

19

 

 

 

20

дает
наиболее низкий процент ошибки равный

 

2,В ячейку F13 вводим формулу точного решения
(12)

=D35*СТЕПЕНЬ(D33;3)/3+D36*СТЕПЕНЬ(D33;2)/2+D37*D33-(D35*СТЕПЕНЬ(D34;3)/3+D36*СТЕПЕНЬ(D34;2)/2+D37*D34)                       (17)

3,В ячейку F14 вводим формулу прямоугольников
«с недостатком» (13)

=h * СУММ (D21:D28)                                                                                          (18)

4,В ячейку F14 вводим формулу прямоугольников
«с избытком» (14)

=h*СУММ (D22:D29)                                                                                            (19)

5,В ячейку F16 вводим формулу трапеций (15)

=h/2*(D21+2*D22+2+D23+2*D24+2*D25+2*D26+2*D27+2*D28+D29)         (20)

6,В ячейку F17 вводим формулу парабол (16)

=h/3*(D21+2*(D22+D24+D26+D28)+4*(D23+D25+D27)+D29)                         (21)

7,В соответствующие ячейки G14:G17 введем формулы определения погрешности измерений по различным
формулам в процентах, например, для ячейки G14 (процент
ошибки при определении площади по формуле прямоугольников «с
недостатком»

=ABS(E35-E34)/E34                                                                                              (22)

8,Для нахождения предпочтительного варианта вычисления воспользуемся
функцией, определяющей минимальное значение в списке аргументов (ячеек G14:G17),Тогда для ячейки G20
получим

                                                                                                                                (23)

9,Полученную таблицу через буфер обмена вставляем в пояснительную
записку

Таблица 4

11,Итого, в нашем случае, минимальный процент ошибки дает вычисление
интеграла по формуле прямоугольников с избытком»